445
Advances in Metabolomics Research in Environmental Stress Response in Plants
Gayen, D., Barua, P., Lande, N. V., Varshney, S., Sengupta, S., Chakraborty, S., & Chakraborty,
N., (2019). Dehydration-responsive alterations in the chloroplast proteome and cell
metabolomic profile of rice reveals key stress adaptation responses. Environ. Exper. Bot.,
160, 12–24.
Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Becker, M., Varmuza, K.,
Liebner, F., et al., (2015). Severe drought stress is affecting selected primary metabolites,
polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir).
Plant Physiol. Biochem., 88, 17–26.
Gupta, P., & De, B., (2017). Metabolomics analysis of rice responses to salinity stress revealed
elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal
Behav., 12, e1335845.
Guy, C. L., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K., (2008). Metabolomics of
temperature stress. Physiol. Plantarum, 132, 220–235.
Han, S., & Micallef, S. A., (2016). Environmental metabolomics of the tomato plant surface
provides insights on Salmonella enterica colonization. Appl. Environ. Microbiol., 82,
3131–3142.
Hein, J. A., Sherrard, M. E., Manfredi, K. P., & Abebe, T., (2016). The fifth leaf and spike
organs of barley (Hordeum vulgare L.) display different physiological and metabolic
responses to drought stress. BMC Plant Biol., 16, 248.
Hildebrandt, T. M., Nesi, N. A., Araújo, W. L., & Braun, H. P., (2015). Amino acid catabolism
in plants. Mol. Plant., 8, 1563–1579.
Ibarra, A. A. G., Wrobel, K., Barrientos, E. Y., Escobosa, A. R. C., Corona, J. F. G., Donis, I.
E., & Wrobel, K., (2019). Impact of Cr (VI) on the oxidation of polyunsaturated fatty acids
in Helianthus annuus roots studied by metabolomics tools. Chemosphere, 220, 442–451.
Isayenkov, S. V., & Maathuis, F. J. M., (2019). Plant salinity stress: Many unanswered
questions remain. Front Plant Sci., 10, 80.
Jahangir, M., Abdel-Farid, I. B., Choi, Y. H., & Verpoorte, R., (2008). Metal ion-inducing
metabolite accumulation in Brassica rapa. J. Plant Physiol., 165, 1429–1437.
Jarup, L., (2003). Hazards of heavy metal contamination. Br. Med. Bull., 68, 167–182.
Jian, H., Xie, L., Wang, Y., Cao, Y., Wan, M., Lv, D., Li, J., et al., (2020). Characterization
of cold stress responses in different rapeseed ecotypes based on metabolomics and
transcriptomics analyses. PeerJ, 8, e8704.
Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., Van, D. J. T., Thomas-Oates, J., &
António, C., (2016). Mass spectrometry-based plant metabolomics: Metabolite responses
to abiotic stress. Mass Spectrom. Rev., 35, 620–649.
Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-
Pareek, S. L., (2016). Transcription factors and plants response to drought stress: Current
understanding and future directions. Front Plant Sci., 7, 1029.
Kang, Z., Babar, M. A., Khan, N., Guo, J., Khan, J., Islam, S., Shrestha, S., & Shahi, D.,
(2019). Comparative metabolomics profiling in the roots and leaves in contrasting genotypes
reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS
One, 14, e0213502.
Kavamura, V. N., & Esposito, E., (2010). Biotechnological strategies applied to the
decontamination of soils polluted with heavy metal. Biotechnol. Adv., 28, 61–69.
Kerkeb, L., & Kramer, U., (2003). The role of free histidine in xylem loading of nickel in
Alyssum lesbiacum and Brassica juncea. Plant Physiol., 131, 716–724.